Publications and Preprints


  • P. Mösta, L. Andersson, J. Metzger, B. Szilagyi, J. Winicour
    The Merger of Small and Large Black Holes
    Preprint. January 2015.
    arXiv:1501.05358 [gr-qc] .
    Download as PDF.

  • J. Metzger, G. Wheeler, and V.-M. Wheeler
    Willmore flow of surfaces in Riemannian spaces I: Concentration-compactness
    Preprint. August 2013.
    arXiv:1308.6024 [math.DG]. Download as PDF.

  • M. Eichmair and J. Metzger
    Jenkins-Serrin-Spruck type results for the Jang’s equation
    Preprint. May 2012. To appear in J. Differential Geom.
    arXiv:1205.4301 [math.DG]. Download as PDF (439 kB).

Journal articles

  • M. Eichmair and J. Metzger
    Unique isoperimetric foliations of asymptotically flat manifolds in all dimensions
    Inventiones mathematicae 194 (2013), 591–630.
    arXiv:1204.6065 [math.DG]. Download as PDF (440 kB).

  • M. Eichmair and J. Metzger
    Large isoperimetric surfaces in asymptotically flat manifolds
    J. Differential Geom. 94 (2013), 159–186.
    arXiv:1102.2999 [math.DG]. Download as PDF (297 kB).

  • T. Lamm and J. Metzger
    Minimizers of the Willmore functional with a small area constraint
    Annales de l’Institut Henri Poincaré / Analyse non linéaire 30 (2013) 497-518. DOI: 10.1016/j.anihpc.2012.10.00.
    arXiv:1201.1887 [math.DG]. Download as PDF (335 kB).

  • M. Eichmair and J. Metzger
    On large volume preserving stable constant mean curvature surfaces in initial data sets
    J. Differential Geom. 91 (2012) 81-102.
    arXiv:1102.3001 [math.DG]. Download as PDF (374 kB).

  • T. Lamm, J. Metzger and F. Schulze
    Foliations of asymptotically flat manifolds by surfaces of Willmore type
    Mathematische Annalen 350 (2011) 1-78.
    arXiv:0903.1277 [math.DG]. Download as PDF (416kB)

  • J. Metzger
    Surfaces with maximal constant mean curvature
    Communications in Analysis and Geometry 18 (2010) 627-647.
    arXiv:0712.3349 [math.DG]. Download as PDF (204 kB).

  • L. Andersson and J. Metzger.
    Curvature estimates for stable marginally trapped surfaces
    Journal of Differential Geometry 84 (2010) 231-265.
    arXiv:math.DG/0512106. Download as PDF (269 kB).

  • T. Lamm and J. Metzger
    Small surfaces of Willmore type in Riemannian manifolds
    Intl. Math. Res. Notices 2010 (2010) 3786-3813.
    arXiv:0909.0590 [math.DG]. Download as PDF (185kB)

  • J. Metzger
    Blowup of Jang’s equation at outermost marginally trapped surfaces
    Communications in Mathematical Physics 294 (2010) 61-72.
    arXiv:0711.4753 [gr-qc]. Download as PDF (173 kB).

  • L. Andersson, M. Mars, J. Metzger and W. Simon
    The time evolution of marginally trapped surfaces
    Classical and Quantum Gravity 26 (2009) 085018.
    arXiv:0811.4721 [gr-qc]. Download as PDF (208 kB)

  • L. Andersson and J. Metzger.
    The area of horizons and the trapped region
    Communications in Mathematical Physics 290 (2009), 941-972.
    arXiv:0708.4252 [gr-qc]. Download as PDF (385 kB).

  • J. Metzger and F. Schulze.
    No mass drop for mean curvature flow of mean convex hypersurfaces
    Duke Mathematical Journal 142 (2008) 283-312.
    arXiv:math.AP/0610217. Download as PDF (277 kB).

  • J. Metzger.
    Foliations of asymptotically flat 3-manifolds by 2-surfaces of prescribed mean curvature
    Journal of Differential Geometry 77 (2007) 201-236.
    arXiv:math.DG/0410413. Download as PDF (331 kB).

  • J. Metzger.
    Numerical Computation of constant mean curvature surfaces using finite elements
    Classical and Quantum Gravity 21 (2004) 4625-4646.
    arXiv:gr-qc/0408059. Download as PDF (1.7MB).

Articles in Proceedings

  • L. Andersson, M. Eichmair und J. Metzger
    Jang’s equation and its applications to marginally trapped surfaces
    Contemporary Mathematics Complex Analysis and Dynamical Systems IV: Part 2. General Relativity, Geometry, and PDE (2011) 13-46
    arXiv:1006.4601 [gr-qc]. Download als PDF (557 kB).


  • J. Metzger.
    Blätterungen asymptotisch flacher Mannigfaltigkeiten durch Flächen vorgeschriebener mittlerer Krümmung.
    Dissertation. Eberhard-Karls-Universität Tübingen.
    Mai 2004.
    Download the revised version as PDF (1.3MB). This version corrects some typos.

    Download the original version as PDF (1.3MB). Published in the TOBIAS-lib. Please cite as:

    URN: urn:nbn:de:bsz:21-opus-13384

Diploma thesis

  • J. Metzger.
    Ein Variationsansatz zur numerischen Berechnung isoperimetrischer Blätterungen
    Diplomarbeit. Eberhard-Karls-Universität Tübingen.
    September 2002.
    Download as PDF (3MB).

Research reports

  • R. Hiptmair & J. Metzger.
    Automated Local Mode Analysis
    Sonderforschungsbereich 382, Report Nr. 174.
    February 2002.
    Download from the Sonderforschungsbereich 382 Reports page.

Comments are closed.